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Polarization of crystal monochromated X-rays. By L. D.JENNINGS, Army Materials and Mechanics Research Center, 
Watertown, Massachusetts, U.S.A. 
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The polarization ratio in a bent crystal monochromated X-ray beam has been measured by examining 
the scattering at 90 ° in two orthogonal planes. The value was found only not to be far removed from the 
value expected on the basis of an ideally mosaic monochromator, but not even to lie between this value 
and that expected on the basis of an ideally perfect monochromator. This result has the implication that 
the polarization factor lies outside the range usually assumed possible. An explanation of this result in terms 
of large secondary extinction is proposed. 

In connection with the Powder Intensity Project (1967) of 
the International Union of Crystallography, we have been 
making a critical study of the various parameters which 
relate structure factors to measured integrated intensities. 
One such parameter is the polarization of the crystal mono- 
chromated X-ray beam incident on the sample. We have 
measured this polarization in a typical case and find that 
the value is outside the limits which are usually tacitly 
assumed. This leads to polarization factors which may 
differ by 15% from the generally accepted values. The pur- 
pose of this communication is to report these results, to 
give a physical explanation of their plausibility, and to 
make a few remarks on their implications. 

We made use of a singly bent LiF monochromating 
crystal diffracting Cu K~ X-rays from a line focus source at 
a scattering angle 20M = 45 °. This monochromatic beam is 
then used as the incident beam in a standard powder 
diffractometer whose plane of diffraction is parallel to 
that of the LiF reflection. In this case, the polarization 
factor entering into the interpretation of the powder inten- 
sities is 

(1 + k cos 2 20)/(1 + k ) ,  

where 20 is the scattering angle from the powder sample. 
The quantity k is the ratio of power in the incident mono- 
chromatic beam with polarization in the diffraction plane 
(rt polarization) to that with the other polarization (a 
polarization). Miyake, Togawa & Hosoya (1964) have called 
attention to the importance of using the correct value of k 
and have suggested a technique for measuring it. This 
technique is to compare relative integrated intensities 
obtained with filtered, unpolarized radiation to those 
obtained with the monochromatic radiation of unknown 
polarization. This information is sufficient, in principle, to 
determine the polarization ratio, k. However, the method 
suffers from the necessity of making accurate integrated 
intensity measurements with filtered radiation; the result 
can be no more accurate than these measurements, limiting 
the advantages of the use of monochromatic radiation. 
Because of this question of the accuracy of their method, 
we have instead measured the integrated intensity of Ge 
(333) from a large perfect crystal face, sweeping first through 
the vertical divergence, then through the horizontal diver- 
gence. Since 20 is virtually 90 ° for this reflection, the ratio 

of these two measurements is k. Actually, it is necessary to 
make corrections of the order of tenths of one per cent 
for the fact that the ~1 and 0~2 components have different 
scattering angles and for the fact that the peaking of the 
thermal diffuse scattering is different in the two measure- 
ments. This latter correction requires some rather extensive 
subsidiary measurements, but does not cause fundamental 
problems. 

Before we give our result, it is fruitful to consider what 
one might expect for the value of k. If the source of X-rays, 
as viewed from a point on the monochromating crystal, 
intercepts an angle larger than the width of the rocking 
curve for this crystal, then the power reflected from the 
crystal is proportional to the integrated intensity. Since this 
statement is true for each state of polarization, k would be 
given by the ratio, ct, of the integrated intensities for each 
polarization. If the crystal behaves as an ideal mosaic, it 
is easy to see that k = ~,n --cos 2 20M (=  0"50 for the present 
case), regardless of geometrical considerations. When 
extinction is important, k would be determined by geometry 
as well as by the value of ~, but these two quantities would 
be equal to the approximation mentioned. In the limit that 
the crystal is ideally perfect, we shall for convenience 
consider that the source is surely larger than the rocking 
curve, and that absorption is negligible, so that k = ~ p -  
cos 20M (=  0"707 for the present case). Many workers have 
assumed that, for a bent and ground monochromator,  the 
value km was appropriate. Miyake et al. (1964), making 
use of a common tacit assumption, allowed values of k 
between kp and km. In fact they found, using their method 
in their geometry, a value about half-way between kp and kin. 

For our apparatus we have measured an experimental k 
value ke=0"722. This value is not only far removed from 
that expected for a mosaic monochromator,  but it does 
not even fall in between the values for a mosaic and a 
perfect crystal. At 20=90 °, the polarization factor using 
ke would differ by 15% from that obtained using the 
traditional value, k,n. 

A plausible physical explanation of this behavior is 
easily given. Consider a crystal with negligible primary 
extinction or particle size broadening, and small absorp- 
tion coefficient, u. We assume a Gaussian distribution of 
mosaic blocks with an angular width parameter i/. For large 
q, there is no secondary extinction, and the integrated 
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intensity is given by Q/2/~. In this case, we have ~= am = 

Q,JQa= cos z 20M. For small mosaic spreads, however, the 
crystal becomes almost completely reflecting throughout the 
range of its mosaic distribution and thus the integrated 
intensity becomes almost independent of Q. This is the case 
of extreme secondary extinction and it leads to values of 
approaching unity. 

The formulae describing this effect, making the above 
assumptions, have been given by Zachariasen (1945) and 
evaluated by Bacon & Lowde (1948), but not in such a way 
as to emphasize the ~ values. We have therefore evaluated 

for various values of r/for 20M = 45 °. Rather than plotting 
these directly, it is more instructive to evaluate also S, the 
integrated intensity (in units of Qo/2/D for the o- polarization 
for each r/. Thus in Fig. 1 we plot as the solid curve the 
calculated values of ~ versus S. It should be clearly under- 
stood that, for a given reflection, the parameter being varied 
to produce this curve is ,1 (i.e. the extinction), and that all 
values of rl large enough to produce a situation free of 
extinction are represented by the single point labeled c<,,. 
One may notice that the curve starts from Ctm on the right 
and approaches unity on the left, conforming to the physical 
reasoning given above. In particular, ~ > c<p for all values of 
S < 0.33. 

The calculations leading to the solid curve in Fig. 1 are 
exact within the assumptions. The actual sample will deviate 
from these assumptions and may also give values of k 
somewhat different from ~ because of geometrical considera- 
tions. To assess roughly the significance of these deviations, 
we measured the integrated intensity of our monochromat-  
ing crystal. Thus we may plot on Fig. 1 our experimental 
value, k~, at its measured value of S. Although the former 
is known to high precision, the latter varied from point to 

point on the crystal, and this range is indicated on the 
Figure. This result is taken to indicate general confirmation 
of the ideas outlined above. 

In actual crystals, as one decreases rl, it is not possible to 
maintain negligible primary extinction and yet have particle 
size broadening small compared to r/. In terms of the param- 
eters of Fig. l, this situation must arise as S approaches the 
perfect crystal value, Sp. To illustrate this result, we have 
plotted the point ~p at the value of Sp appropriate to our 
LiF case. We have also indicated, with the dashed line, a 
possible dependence of k on S. It is interesting to note that 
k is greater than kp over a range of a factor of 10 in S, 
whereas it lies between kp and km only over a factor of 3 
in S. 

The appearance that Fig. 1 would take for other materials 
and other wavelengths may readily be indicated. The cal- 
culated curve depends only on 20M. It may adequately be 
characterized by noting that ~ = ~m -- cos 2 20M at S = 1, and 
by giving the critical value of S (=  So) for which ~= ~p = 
cos 20M. The values of Sc are shown in the insert to Fig. 1 
and they show that S~ is not strongly dependent on angle 
over the range likely to be used for monochromatization.  
Near 20M=90 °, Sc=COS 20M. The other important con- 
sideration is how far to the left of the Figure is Sp. This 
is determined by the enhancement factor (Chipman & 
Batterman, 1963), which is given closely, in practical cases, 
by Sm/S~,=(3rcr~F2)/(16uV). From these results one can 
see, for example, that a given crystal at Mo K~ would be 
more likely to have k > kp than at Cu K~. This is the case 
because both Sc and the enhancement factor are greater 
for Mo K~. The serious implications of this result to the 
value of k are, however, mitigated by the fact that the 
entire possible range k,~ < k < l is less for the Mo K~. 
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Fig. 1. The variation in polarization ratio with integrated intensity. The ratio of integrated intensity for the two polarization 
states is denoted by ~. The ratio of power in the two polarization states after an unpolarized beam is diffracted by a crystal in 
a fixed position is denoted by k. It is thus a property of both the crystal and geometry, but it is approximately equal to ~. The 
value of integrated intensity for the a polarization, expressed in units of Qa/2p, is denoted by S. The solid curve gives the cal- 
culated dependence of ~ on S, induced by secondary extinction alone, for the case of 20M = 45 °. The points with the subscripts 
m and p refer to the mosaic and perfect limits and e to the experimental point. The horizontal line through the latter does not 
refer to experimental error but to the range of values over the face of the crystal. The dashed curve is a guess as to the course 
of k or ~ in an actual crystal. The insert indicates how the solid curve would appear for other values of 20M as discussed 
in the text. 



474 S H O R T  C O M M U N I C A T I O N S  

It is of interest to examine the results of Chandrasekaran 
(1959) in the light of the present point of view. He measured 
values of 0c in a number of cases in the hope that it would 
be a suitable measure of the perfection of the crystals 
studied. If ~ traversed a smooth curve between ~, and ~m, 
it would indeed be suitable, but the form of the dashed 
curve in Fig. 1 shows that c¢ is not a good measure of per- 
fection. As a matter of fact, Chandrasekaran gives data 
which support the general form of the dashed curve. In 
one case for S=(0.10)Sm he found ~=(1.06)~p, and in 
another for S=(0"26)Sm he found ~=(0.98)~p. The cor- 
responding enhancement factors were 20 and 6, and these 
were the two largest enhancement factors which he studied. 
These cases had different values of 20M, but this does not 
affect the general argument greatly, as was pointed out 
above. 

In conclusion, it should be pointed out that the important 
consideration is the fact that we have measured the value 
of the polarization ratio of a monochromated beam for an 
actual apparatus using an accurate technique. The value 
obtained not only is not close to that appropriate to a 
mosaic monochromator ,  but is not even in the range 
between such a value and that calculated for a perfect 
monochromator.  Using the mosaic value may lead to an 
error in the polarization factor of up to 15%. This result 

has important applications to any study of the angular 
dependence of monochromatic X-ray scattering, no matter 
what the form of the sample, for both Bragg and diffuse 
scattering, and regardless of the position of the mono- 
chromator with respect to the sample. In fact, it may be 
necessary to use these considerations for reflections of 
unpolarized radiation which suffer appreciable extinction. 
The validity of the plausibility arguments given to explain 
the situation do not alter the necessity of accepting the 
measured value of polarization ratio. 

I should like to thank Drs D .R .Ch ipman  and C.B. 
Walker for discussion and comments on the manuscript. 
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Comments on a paper by Sabine. By CHARLES A. JOHNSON, Edgar C. Bain Laboratory for Fundamental Research, 
United States Steel Corporation. Monroeville, Pennsylvania 15146, U.S.A. 

(Received 7 April 1967 and in revised form 29 January 1968) 

A recent calculation of the diffraction effects produced by condensed sheets of interstitial atoms is discussed. 
An error is pointed out; this error vitiates the calculation. 

Sabine (1966) has recently published a calculation of the 
diffraction effects produced by condensed layers of inter- 
stitial atoms in face-centered cubic crystals. His calculation 
predicts peak shifts which, for small values of the fault 
probability ~, are opposite to the shifts previously computed 
for extrinsic faults by Johnson (1963) (for 0 _<~ _< 1) and by 
Warren (1963) (for ~,~ 1). The results given by Johnson and 
by Warren agree when ~,~ 1. Sabine notes that in the limit 
of low fault probability (~<~ l) the diffraction effects pro- 
duced by condensed interstitial layers should be the same as 
those produced by extrinsic faults. He does not explain the 
discrepancy. 

I believe that this discrepancy is accounted for by the 
fact that there is an error in Sabine's calculation. This error 
is to be found in the difference equation scheme by which 
Sabine computes the probabilities of the possible stacking 
sequences. (Since we are particularly interested in case 
~,~1, Sabine's parameter /~=~/(1 +~) will be used inter- 
changeably with ~). 

Suppose that a given layer is A. If this layer is part of the 
original crystal then the probability that the next layer will 
be B is (1 -/~). But if this A layer is a condensed layer then 
the probability that the next layer will be B is/~. [For sup- 
pose that this A layer is the only condensed layer in the 

crystal (so that/%+0); in this case the next layer is necessarily 
C.] This distinction between original and condensed planes 
is shown in Sabine's 'probability tree'. Unfortunately, Sa- 
bine's difference equation scheme does not incorporate this 
distinction between original and condensed layers. Specifi- 
cally, the 'additional relation' 

pA = ppn,,_, + (1 -,8)PC_x* 

is true only if the ( m -  1) layer is part of the original crystal. 
If the ( m -  1) layer is a condensed layer this relation must 
be changed to 

PA m = (1 --fl)eBr.,_ , +flPC 1 . 

This difficulty seems to be insurmountable in the difference 
equation approach used, and clearly vitiates Sabine's sub- 
sequent results for all values of the fault probability. 

The inherent difficulty in applying such a difference 
equation scheme to this problem can be seen as follows. 
There are, allowing for normalization of the probabilities 
to unity, two independent probabilities for the stacking of 

* There is a typographical error in this equation in Sabine's 
paper. The last term should read (l-f l)Pm-2 c. Sabine's sub- 
sequent equations follow only if this correction is made. 


